STRENGTH TRAINING EXERCISE PRESCRIPTION

Dr. K. PRABHAKARAN MANILAL Senior Scientific Officer Sports Authority of India Bangalore

DEFINITION OF STRENGTH

Strength is the ability of the neuromuscular system to produce force

EXERCISE PRESCRIPTION

- Prescription of appropriate exercise stress is important for optimal physiological adaptation.
- Development of an appropriate strength training programme is a complicated process.
- This needs a solid understanding of scientific principles and programme design guidelines.
- Knowledge of scientific principles help in developing logical and successive plans.
- Should be based on sound rationale.

PROPER EXERCISE PRESCRIPTION IS POSSIBLE ONLY WITH:

MAIN PROGRAM DESIGN COMPONENTS

Needs Analysis Acute Programme Variables Chronic Programme Manipulations Administrative Concerns

- Is the starting point of any programme design
- To determine the needs of the individual and sport (establish the primary goal or outcome of training)
- Fitness level & training status of the individual.

NEEDS ANALYSIS: GENERAL FOCUS

- Training goal/Sports demand
- Individual's need (assessment of the Athlete)
- **TRAINING GOAL**
- Establish the primary goal or outcome of the training (improvement of strength, Power, size, muscular endurance etc)
- EVALUATION OF SPORT
- Unique characteristics of the sports helps to design specific training programme
- Movement Analysis (muscular involvement, body and limb movement pattern, Type of muscular contraction, Speed of contraction).
- Sports demand strength/ power, hypertrophy, Muscular endurance)
- Physiological Analysis (Sports Metabolism)
- Injury Analysis (Common injuries associated with sports)
- Needs analysis, is essential for the selection of exercises, deciding the intensity

NEEDS ANALYSIS: GENERAL FOCUS cont.

- Assessment of the Athlete (Individual assessment)
- Athlete's needs and goals
- Individual's current fitness level
- Training background
- Exercise technique experience
- History of injury

ACUTE PROGRAMME VARIABLES

- Choice of Exercise
- Order of Exercise
- Intensity of Exercise
- Number of Repetitions and Sets
- Rest Intervals between Sets

ACUTE PROGRAMME VARIABLES: GENERAL FOCUS

- Acute programme variables concerns the design of a single specific strength training session
- Allow the quantification of the load
- Make it possible to predict the training response and adaptation
- By manipulating these variables, numerous different workouts can be created

CHOICE OF EXERCISE

- Training goal
- Muscle groups to be trained
- Sports demands (SAID principle)
- Movement pattern to be trained
- Muscle balance (left & right, upper/lower body, agonist antagonist)
- Exercise technique experience (free wts, Machines, other modalities)
- Performance level (Beginner, Intermediate& Elite)
- Training phase(PP,CP TP)
- Availability of equipment and training time
- Age and fitness level

CLASSIFICATION OF EXERCISES

- Structural (multi-joint, weight bearing)
- Supplemental (multi-joint, non-weight bearing)
- Isolation (single joint)
- Unilateral, bilateral
- Con, ecc, isometrics

STRUCTURAL EXERCISE

- Multi-joint exercises
- Weight bearing
- High skill involvement
- Stressing more muscle mass, High metabolic demand, Neural response, Hormonal response.
- Directly or indirectly loading the spine

AUXILLARY EXERCISE

- Also multi-joint but
- not weight bearing
- Involve less muscle mass compared to structural ex.

ISOLATION OR SINGLE JOINT EXECISES

- Involve only one joint, less muscle mass
- Reduced skill level .

ORDER OF EXERCISE

- Proper sequence of exercise for best training effect, order of exercise affects the quality of effort or technique of another exercise and to optimize the preservation of exercise intensity)
- There are three basic workout structures
 - 1. Total body workouts
 - 2. Upper/Lower body split workouts
 - 3. Targeted Muscle group
- Large to small muscles
- Structural-supplemental-isolation
- Priority system
- Push-pull exercises (Alternated)
- Upper body –lower body
- classical-semi- classical-power (highly complex/ technically demanding to least complex)

EXERCISE INTENSITY

- Most important variable
- Major stimulus for training adaptation
- Depends on training goal, exercise order, volume, frequency, repetition speed and length of rest interval.
- Intensity is relative
- Selection of intensity depends on:
 - 1. Exercise selected
 - 2. Individual's training background
- Intensity is always calculated from maximum
- IRM (percentage of the 1 RM)
- Repetition maximum
- RM range (goal repetition)

INTENSITY

- Methods of increasing resistance exercise intensity
- I.Increase relative percentage
- Week 1-3 -70%
- Week 4-6 -75%
- Week 7-9-80%
- Increasing relative % is common in periodized programme
- % can be used to vary intensity from set to set or to quantify a training cycle (hypertrophy cycle 65-75% strength 80 > 0f I RM

WAYS TO INCREASE INTENSITY: EXAMPLES

- 1. Increase Absolute Amount
 - **Desired work zone= 8reps**
 - Increase weight when 8 reps are performed for all sets
 - Week 1-2 x 8 reps 50 kg
 - Week 2-4 x 8reps 52-5 kg etc
- 2. Train within a RM range
- **3.** The absolute increment depends on the character of exercise(large muscle mass can tolerate more increase than small muscle mass exercise)

WAYS TO INCREASE INTENSITY: EXAMPLES cont.

- 4. Train within a RM Range
 - Target Rep Zone
 - Target Zone= 8-12 reps
 - Week 1-2 =8reps
 - Week 3-4 =10 reps
 - Week 5-6 = 12 reps
 - Increase weight for next 8 reps.

LOAD INTENSITY BASED ON TRAINING GOAL

Training Goal	Load (% of 1 Rm)	Goal reps
Strength	>80	1-6
Power	75-85	3-5
' Hypertrophy	70-85	6-12
Muscular Endurance	<60	>12

NUMBER OF REPETITIONS AND SETS

- For proper training effect, select optimum no of repetitions and sets
- Number of sets/reps do not have to be the same for all exercises
- Depends on training goal, intensity of exercise, training status of the individual, number of muscle groups trained per workout.
- Several systems are sensitive to training volume (Nervous, Metabolic, Hormonal and Muscular)
- single set may be appropriate for beginners and multiple set for advance athletes
- When multiple sets are used, its structure is to be determined (pattern of loading and volume prescription from one set to the next)
- Optimum number of reps and sets are important for proper training outcomes
- Higher intensity-low reps
- Depends on the type of exercise
- Low intensity-large reps

SETS AND REPS BASED ON TRAINING GOAL

Training Goal	Reps	Sets
General fitness	8-15	1-2
Muscular endurance	>12	2-3
Muscular hypertrophy	6-12	3-6
Muscular strength	1-6	2-6
Power	3-5	3-5

LENGTH OF REST INTERVAL BETWWEN SETS

Length of the rest interval influences the hormonal, metabolic responses to resistance training

- Depends on training goal
- (strength& power, hypertrophy& muscular endurance
- Intensity of exercise
- Athlete's training status
- Targeted energy system
- ACSM recommends 2-3 minutes rest between structural exercise and 1-2 minutes between assistance exercises.
- Strength Endurance (High reps 25-20 reps 1-2minutes rest and for high intensity strength endurance 10-15 reps, less than one minute RI.

REST INTERVAL BASED ON TRAINING GOAL

Training Goals	Rest interval
General fitness	30-90
Muscular endurance	<30sec
Hyper trophy	30-90sec
Muscular strength	2-5minutes
Power	2-5 minutes

